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Acronyms and Abbreviations

Abbreviation Description

ASGM Artisanal Small-Scale Gold Mining 

AOI Area of Interest

EO Earth Observation

GEE Google Earth Engine 

NDVI Normalised Difference Vegetation Index

VM Virtual Machine
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Introduction
Artisanal small-scale gold mining (ASGM) is an extremely harmful practice, often 
resulting in pollution – particularly, mercury contamination – and deforestation of 
ancient rainforest. This practice is prevalent in Suriname and is difficult to monitor due 
to the remoteness of the affected regions. Remote sensing, which is the acquiring of 
information from a distance via sensors on satellites and aircraft, can excel at detecting 
events and practices in hard-to-reach areas. This is due to large-scale data collection 
practices, done in a timely and repeatable manner, meaning vast amounts of salient data 
can be collected over large remote regions. Remote sensing data collected from orbiting 
satellites can be used to characterize the land surface at scale, leading to invaluable 
insights about current landcover trends and changes. Currently, efforts are underway 
to leverage earth observation (EO) data to derive robust methodologies to model the 
landcover of Suriname – including in areas where ASGM is practiced. 

Members of the scientific community within the country are working on EO static datasets 
provided by the environmental consulting company Assimila to derive landcover maps 
to help identify areas of changing ASGM prevalence. The detection of exposed bright 
soil is often an indicator of mining activity. Assimila also consulted with members of the 
scientific community in Suriname on best practice techniques and has provided preset 
workflows for participants to follow, which removes some of the technical overhead. 
Assimilla also continues to monitor the public code repository that users have access to, 
where the codebase can be downloaded and monitored, as well as raise issues. 

This report details the technical work done by the Assimila team to further the project’s 
goals. Firstly, it presents the data used in the workflow and its download. Then it 
discusses the methodology used to create a “clean” dataset, which involves removing 
pixels with cloud contamination and generating spectral index data and subsequent 
multitemporal composites to act as features in the machine learning model used. The 
third section outlines the machine learning workflow used to train and implement the 
model over a wide spatial scale. The final section describes the Jupyter Hub, which 
participants can access to carry out this work. 
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1: Model data 
To detect ASGM, we focused on using freely available data from Copernicus Sentinel-2 
Mission, which is a medium-resolution, multispectral imaging mission supported by two 
near-polar orbiting satellites. This mission has been operational since March 2017, and is 
used by the Remote Sensing community for a variety of conservation and environmental 
monitoring purposes. This data benefits from a spatial resolution of 10 meters, which 
importantly is sufficiently high to detect the ASGM landcover. ASGM landcover often 
covers small areas, so other related EO platforms are not capable of detecting the signal 
of ASGM as spectral data will be contaminated with surrounding landcover types, i.e. 
rainforest. Even above the often clouded Suriname landscape, Sentinel-2 detects some 
cloud-free data due to its low global revisit time. With both Sentinel 2A and Sentinel 2B 
(the two satellites of the mission) in their near polar orbiting arrangement, it is possible to 
get new data every ~six days, meaning that participants in this project have a significant 
data repository from which to derive their landcover maps. 

Sentinel-2 also has a wide variety of spectral bands able to detect features across a 
broad range of the electromagnetic spectrum. The majority of the bands are found in the 
visible and near-infrared regions of the electromagnetic spectrum, which is advantageous 
given that the majority of landcover changes due to ASGM are evident from vegetation 
cover, which is particularly sensitive to this type of energy. 

Assimila has significant experience with downloading, preprocessing, and handling 
geospatial data, with a particular focus on Sentinel-2 data. Therefore, we adapted 
downloaders from existing Assimila code to create bespoke Jupyter Notebooks capable 
of retrieving this data from the Google Earth Engine (GEE). These notebooks are 
available at the publicly accessible Github at the following address: https://github.com/
AlexCornelius/EO4ASGM/blob/main/sentinel_2_downloader.ipynb. 

These downloaders were built to be easily accessible to people with little experience in 
handling geospatial data, and therefore were designed to use as few external libraries 
and tools as possible. The only input the notebook requires is a geographically explicit 
JavaScript Object Notation file outlining a bounding box of the area of interest (AOI) and 
a year variable (for example, 2019), so as to minimize the amount of data gathered 
from the GEE at one time. The script establishes an Application Programming Interface 

https://github.com/AlexCornelius/EO4ASGM/blob/main/sentinel_2_downloader.ipynb
https://github.com/AlexCornelius/EO4ASGM/blob/main/sentinel_2_downloader.ipynb
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connection to the GEE and requests all Sentinel-2 bands available for the AOI, then sends 
a request to transfer the data to the Google Bucket, or Google Drive, of choice. Processing 
data this way reduces the storage overhead to acquire data and leaves the majority of 
the processing on the GEE. The data is then transferred from the Google Bucket to a local 
machine, where it is available to participants. 

The Assimila team ran this notebook on behalf of the participants so that they could 
focus their efforts on the scientific content of the project, rather than the data acquisition 
itself. Data was downloaded for the years 2019 and 2022, which were selected for the 
project because both these years have a complete catalog of data, and the gap between 
them would highlight areas of significant landcover change – for example, from forest 
cover to the deforestation associated with ASGM. 

The AOI was delineated collaboratively with participants. The one that was identified had 
a variety of landcovers so that participants would have to establish a comprehensive 
modeling framework, contained clear signs of ASGM, and included significant rainforest 
as well as the northern tip of Lake Brocopondo, so that water landcover was included 
in the modeling. This area encompasses 674 square kilometers, which required 13 
gigabytes of data to cover the two study years. 

Figure 1 Location of the area of interest (green dotted line)
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2: Creating a “clean” Sentinel-2 dataset, 
spectral indexes, and temporally 
aggregated data
Due to shorter wavelengths of Sentinel-2 band data, when a pixel is covered by clouds 
the signal of the surface is obscured by the clouds’ spectral signature. This means that 
to obtain an accurate understanding of the landcover with Sentinel-2 data, the user 
needs to be able to automatically eliminate clouded pixels from the analysis. Many 
methodologies can accomplish this task, including the multitemporal “difference to 
reference” methodology presented at the original workshop. This is a classical technique 
in Remote Sensing in which clouds are identified by finding significant deviations from 
the “reference” reflectance. The “reference” is found by using the full timeseries of blue, 
green and red reflectance and finding the mean of the lowest 10 percent of values, which 
represents the normal cloud-free behavior of the pixel. 

But due to the large spatial scale of the AOI, implementing this methodology over a wide 
spatial scale would be extremely computationally intensive. As such, the clouds are 
eliminated with a secondary dataset. This is the “s2cloudless” layer, which is the output 
of a machine learning regressor trained to estimate the probability that a pixel is clouded 
(https://github.com/sentinel-hub/sentinel2-cloud-detector). This product is available 
through the GEE and has been generated for all Sentinel-2 data layers, so whenever users 
download the raw spectral data, they can also download the s2cloudless layer, which 
will have the same dimensions as the Sentinel-2 data. This is useful for participants, as 
whenever they open any Sentinel-2 data, they can also open the s2cloudless layer, create 
a cloud mask, and set the clouded values in the Sentinel-2 data to “not-a-number”. This 
means clouded values are excluded from any processing and will not affect the results of 
the analysis. 

This method also allows users to experiment with customizing their cloud-masking 
criteria, where the s2cloudless values range from 0 percent to 100 percent (100 percent 
being the condition where the pixel is entirely clouded), so participants must set a 
threshold for what probability of cloud they are willing to include in their dataset. Too 
high a threshold, and some areas will be entirely masked out; too low and there will be 

https://github.com/sentinel-hub/sentinel2-cloud-detector
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a significant influence of clouds on the pixels’ temporal behavior. This threshold should 
stimulate scientific discourse among the participants as to which threshold is the most 
appropriate, where the default is set to 20 percent in the example notebook.  

An example of this model output is shown in Figure 2, where the left panel shows the 
Sentinel-2 Band 2 (blue band) reflectance and the right shows the s2cloudless output for 
the same area. It is clear that bright clouded regions in the south of the image correspond 
with regions of high cloud probability.

Figure 2. Left: Example reflectance data for the AOI, which includes partial cloud cover. Right: s2cloudless 
probability corresponding layer.
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Once the data has been cloud masked, the next step is to create spectral indexes. The 
reflectance data itself is a powerful discriminator between different landcover types, but 
often further information is obtained by comparing the reflectances between spectral 
bands. For example, a unique feature of the spectral response of vegetation is the high 
reflectance of near-infrared data compared to the visible light. This can be exploited in the 
Normalized Difference Vegetation Index (NDVI), which is a spectral index that compares 
the reflectance of the red band of EO data to the near-infrared data. NDVI will return high 
values for pixels that conform to the known reflectance response of vegetation.

Therefore, a Python function was provided to participants so that they could easily 
generate their own spectral indexes, with a few examples included to precompute 
common spectral indexes. This function was written to ingest a Python dictionary with the 
spectral data contained in each directory of the library as a 3D numpy array, and then 
perform common matrix manipulation on these arrays to generate spectral indexes. The 
output of this calculation is then added to the input dictionary under a user-specified 
key. This enables participants to research their own spectral indexes and add whichever 
ones they think would be valuable to the function and help discriminate between 
landcover types. For example, indexes based around identifying water, like the Normalized 
Difference Water Index, would be helpful. 

Once the participants generate their spectral indexes, the next task is to aggregate the 
3D datasets of spectral indexes and spectral reflectance values into 2D composites in 
the time dimension of the data. The aggregations summarize the temporal behavior in 
a variety of ways for each pixel. The most common is the average value throughout the 
year, where different landcover types will have different average values. For example, the 
exposed bright soil that is often a feature of ASGM will have a much higher average value 
in the visible Sentinel-2 bands than water and forest cover. The process of aggregating 
the data is written into another piece of code for use by the participants, where the input 
to the function is a 3D array, which could be any of the datasets the participants generate 
themselves. The 3D array is aggregated over time using any of the possible “nan-friendly” 
numpy functions along the time axis, where the participants can pick aggregators like 
np.nanstd, which returns the standard deviation of the pixels’ behavior across time. 
The documentation within the function shows where users can read about different 
aggregators, and participants are encouraged to experiment. 
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Often, different landcover types exhibit distinct temporal behavior, which can be 
summarized by different temporal aggregators. For example, vegetative landcover, e.g. 
rainforest, will vary its reflectance over the year given the phenology and seasonality of 
the plant. This means the degree to which reflectance changes can be summarized by 
the pixels’ standard deviation. This is distinctly different from other landcover types, like 
roads and exposed concrete, which will generally exhibit very little change over the year 
and have a low standard deviation in a pixel’s reflectance. Hence, capturing temporal 
behavior with a variety of different temporal aggregators can be invaluable in landcover 
classification workflows and increase the types of data available to distinguish between 
landcover types. 
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3: Machine learning model building
Once the participants have run the example notebook, they will have successfully 
generated cloud-free Sentinel-2 datasets, exploited spectral relationships by generating 
spectral indexes, and temporally aggregated these to create 2D composites for all 
variables. The next step is to transform these composites into a meaningful landcover 
classification. To do this, the participants must use the training data supplied by the local 
partners in Suriname - Stichting Bosbeheer & Bostoezicht (Forest Management & Forest 
Supervision Foundation, termed SBB). This data is a set of shapefiles containing labeled 
polygons that delineate the extent of the three main landcover types found in the AOI: 
water, forest, and ASGM. This is an invaluable dataset that makes the whole workflow 
feasible, as when using EO data it is often very difficult to find accurate training data. 

SBB supplied the shapefiles in a multi-feature shapefile for each individual year. The first 
job was to split these multi-featured shapefiles into shapefiles containing a single feature 
each. Doing so reduces the amount of data opened when training the model. Given the 
size of the AOI, cutting down the memory usage is very important. This task was carried 
out by members of the Assimila team, and the single-feature shapefiles were added to 
a common directory that all the participants could access. The next step was creating 
code in the example notebook to use these shapefiles to open the Sentinel-2 data that 
all participants could run. The code to do this was a loop that iteratively used each of the 
features for a single study year to open each of the Sentinel-2 data files. When using the 
shapefiles to open the data, the code will only open data contained within each polygon. 
This means that if the shapefile delineates water landcover, the returned Sentinel-2 data 
only contains data covering water landcover. 

A visualization tool has been given to participants to help visualize the “separability” 
of the spectral features between the different landcover types. The best tools in any 
machine learning model are features that are distinctly different between landcover 
types, and this visualization displays a probability density of each of the features for 
the three landcover types. Features that will be especially effective for the classification 
model are ones where the histograms from each of the three landcover types take up 
different regions of the feature space. Figure 3 shows an example of this visualization, 
where the blue, green, and orange histograms represent the distribution for water, forest, 
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and ASGM landcovers, respectively. An example of a very effective feature is the NDVI 
mean feature (bottom left panel), where the three histograms for each landcover are very 
separated and uniquely distributed.

Once the data has been opened with these shapefiles, using the code provided, the 
participants can easily calculate the spectral indexes and aggregate the data for each 
of the individual features. The next task is to build a training dataset and a validation 
dataset. The training dataset is the majority proportion of the compiled data, normally 
70 percent, that a machine learning model will use to build the statistical relationships 
between the input variables and the target variable, i.e., the landcover class. The 
validation dataset is what the trained machine learning model will be tested against to 
check its validity and accuracy, and is completely unseen data to the model so that the 

Figure 3. Feature distribution visualization tool available for participants to show the separability of different 
features available to the machine learning.
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results are a representation of its accuracy when applied to new data. The training and 
validation datasets are derived by randomly sampling the complete dataset, where the 
code to do this is given in the example notebook. 

That last stage of the model building is to train a machine learning model on the training 
dataset. The implementation of two models is given in the example notebook, where the 
contrast between the two models will yield interestingly differing results. The first example 
given is a single decision tree provided with the Sklearn library. This is the most basic of 
supervised classifiers and will iteratively split the feature space to increase the accuracy 
of the classification. The second model is a gradient-boosting ensemble of decision 
trees provided in the library XGBoost. This creates a multitude of decision trees that are 
trained on a random subset of training data and features to make the final classifier more 
robust in unseen scenarios. When establishing these models in the example notebook, 
the parameters are supplied for participants with the intention that they experiment to 
improve their results and make their models more robust. In addition, code is supplied to 
test the accuracy of the validation dataset. This measurement is supplied as an accuracy 
score, which summarizes the average accuracy of the classification for all the classes. 

The final step in the entire workflow is to implement the model. A function is supplied 
to the participants that enables them to implement their model over the entire AOI in a 
memory-efficient way, so that multiple users can carry out classifications at the same 
time. To save on memory, the classification is applied onto 500x500-meter chunks 
iteratively across the AOI, which opens data in piecemeal spatial subsections. The 
outputs of each chunk classification are stitched together and saved to disk as geotiffs. 
Each classification represents the annual landcover classification for the study year 
selected at the beginning of the notebook, i.e., 2019 or 2022. The difference between 
the classifications represents significant change in spectral signatures indicating that the 
landcover has changed.
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4: Jupyter Hub
It is important for collaborative research that participants have a common environment 
in which to work, where there is access to data, computation resources available for 
large processing jobs, and significant disk space for input data as well as participants’ 
outputs. With all of this in mind, members of Assimila set up a Jupyter Hub running on a 
Google cloud virtual machine (VM). This VM was set up with plenty of storage space and 
processing capabilities, where a Jupyter Hub is constantly available for participants to 
login via their unique credentials and run Jupyter Notebooks. This enables participants 
to experiment by themselves and understand the codebase in their own time. Results 
written by participants will be saved to their home directories and subsequently exported 
to their own working environment.

Figure 4 displays a screenshot of the Jupyter Hub, which shows a helpful file explorer on 
the left-hand side and the main Jupyter Notebook in the center of the screen. This figure 
shows an example classification for the AOI generated by members of the Assimila team 
using the example notebook provided. 

Figure 4 Example screenshot of the Jupyter Hub available to participants.
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5: Conclusions
EO and machine learning are invaluable tools when monitoring the spatial and temporal 
distribution of ASGM. Within this project, freely available Sentinel-2 data was downloaded 
and made available to local partners in Suriname, alongside helpful code and test 
scripts, so that landcover classifications could be generated for an AOI in inner Suriname. 
Participants were able to generate landcover classifications for 2019 and 2022, so 
that difference analysis could be performed between the classifications. By using these 
datasets, Assimila and other participants found that there was a loss of ~24km2 of 
primary rainforest to ASGM landcover. In addition it was found that the area covered by 
ASGM increased by 47 percent in the AOI.

Given these concerning statistics, it reinforces the need for continued research to make 
this sort of analysis consistent and systematic, so that an accurate understanding of 
the changing landscape can be made. ASGM is a significant and increasing threat to 
primary rainforest in Suriname, where repeat surveys of the change in landcover should 
be carried out. The methodologies and techniques used in this analysis are now publicly 
available and have been written in such a way that makes the workflow scalable. This 
means the spatial area of the analysis can easily be increased by simply increasing the 
spatial area of the initial AOI. With this in mind, this work represents a promising new tool 
in monitoring ASGM by increasing the technical capacity of local researchers in the field 
of EO data handling, EO manipulation and machine learning.
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